Joint SVM for Accurate and Fast Image Tagging

نویسندگان

  • Hanchen Xiong
  • Sándor Szedmák
  • Justus H. Piater
چکیده

This paper studies how joint training of multiple support vector machines (SVMs) can improve the effectiveness and efficiency of automatic image annotation. We cast image annotation as an output-related multi-task learning framework, with the prediction of each tag’s presence as one individual task. Evidently, these tasks are related via correlations between tags. The proposed joint learning framework, which we call joint SVM, can encode the correlation between tags by defining appropriate kernel functions on the outputs. Another practical merit of the joint SVM is that it shares the same computational complexity as one single conventional SVM, although multiple tasks are solved simultaneously. According to our empirical results on an image-annotation benchmark database, our joint training strategy of SVMs can yield substantial improvements, in terms of both accuracy and efficiency, over training them independently. In particular, it outperforms many other state-of-the-art algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

A new classification method based on pairwise SVM for facial age estimation

This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...

متن کامل

Scalable, accurate image annotation with joint SVMs and output kernels

This paper studies how joint training of multiple support vector machines (SVMs) can improve the effectiveness and efficiency of automatic image annotation. We cast image annotation as an output-related multi-task learning framework, with the prediction of each tag’s presence as one individual task. Evidently, these tasks are related via dependencies between tags. The proposed joint learning fr...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ECT and LS-SVM Based Void Fraction Measurement of Oil-Gas Two-Phase Flow

A method based on Electrical Capacitance Tomography (ECT) and an improved Least Squares Support Vector Machine (LS-SVM) is proposed for void fraction measurement of oil-gas two-phase flow. In the modeling stage, to solve the two problems in LS-SVM, pruning skills are employed to make LS-SVM sparse and robust; then the Real-Coded Genetic Algorithm is introduced to solve the difficult problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014